Внезапно, независимые государства призывают нас к новым свершениям, которые, в свою очередь, должны быть смешаны с не уникальными данными до степени совершенной неузнаваемости. Для современного мира убеждённость оппонентов однозначно фиксирует необходимость системы массового участия.
автор

hagalnaudbase3

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » hagalnaudbase3 » анкеты » тык


тык

Сообщений 1 страница 3 из 3

1

https://forumupload.ru/uploads/001b/d5/f7/5/t377417.png

0

2

MP3 (formally MPEG-1 Audio Layer III or MPEG-2 Audio Layer III)[4] is a coding format for digital audio developed largely by the Fraunhofer Society in Germany under the lead of Karlheinz Brandenburg,[11][12] with support from other digital scientists in the United States and elsewhere. Originally defined as the third audio format of the MPEG-1 standard, it was retained and further extended — defining additional bit-rates and support for more audio channels — as the third audio format of the subsequent MPEG-2 standard. A third version, known as MPEG 2.5 — extended to better support lower bit rates — is commonly implemented, but is not a recognized standard.

MP3 (or mp3) as a file format commonly designates files containing an elementary stream of MPEG-1 Audio or MPEG-2 Audio encoded data, without other complexities of the MP3 standard.

With regard to audio compression (the aspect of the standard most apparent to end-users, and for which it is best known), MP3 uses lossy data-compression to encode data using inexact approximations and the partial discarding of data. This allows a large reduction in file sizes when compared to uncompressed audio. The combination of small size and acceptable fidelity led to a boom in the distribution of music over the Internet in the mid- to late-1990s, with MP3 serving as an enabling technology at a time when bandwidth and storage were still at a premium. The MP3 format soon became associated with controversies surrounding copyright infringement, music piracy, and the file ripping/sharing services MP3.com and Napster, among others. With the advent of portable media players, a product category also including smartphones, MP3 support remains near-universal.

MP3 compression works by reducing (or approximating) the accuracy of certain components of sound that are considered (by psychoacoustic analysis) to be beyond the hearing capabilities of most humans. This method is commonly referred to as perceptual coding or as psychoacoustic modeling.[13] The remaining audio information is then recorded in a space-efficient manner, using MDCT and FFT algorithms. Compared to CD-quality digital audio, MP3 compression can commonly achieve a 75 to 95% reduction in size. For example, an MP3 encoded at a constant bitrate of 128 kbit/s would result in a file approximately 9% of the size of the original CD audio.[14] In the early 2000s, compact disc players increasingly adopted support for playback of MP3 files on data CDs.

0

3

The MP3 lossy audio-data compression algorithm takes advantage of a perceptual limitation of human hearing called auditory masking. In 1894, the American physicist Alfred M. Mayer reported that a tone could be rendered inaudible by another tone of lower frequency.[19] In 1959, Richard Ehmer described a complete set of auditory curves regarding this phenomenon.[20] Between 1967 and 1974, Eberhard Zwicker did work in the areas of tuning and masking of critical frequency-bands,[21][22] which in turn built on the fundamental research in the area from Harvey Fletcher and his collaborators at Bell Labs.[23]

Perceptual coding was first used for speech coding compression with linear predictive coding (LPC),[24] which has origins in the work of Fumitada Itakura (Nagoya University) and Shuzo Saito (Nippon Telegraph and Telephone) in 1966.[25] In 1978, Bishnu S. Atal and Manfred R. Schroeder at Bell Labs proposed an LPC speech codec, called adaptive predictive coding, that used a psychoacoustic coding-algorithm exploiting the masking properties of the human ear.[24][26] Further optimisation by Schroeder and Atal with J.L. Hall was later reported in a 1979 paper.[27] That same year, a psychoacoustic masking codec was also proposed by M. A. Krasner,[28] who published and produced hardware for speech (not usable as music bit-compression), but the publication of his results in a relatively obscure Lincoln Laboratory Technical Report[29] did not immediately influence the mainstream of psychoacoustic codec-development.

The discrete cosine transform (DCT), a type of transform coding for lossy compression, proposed by Nasir Ahmed in 1972, was developed by Ahmed with T. Natarajan and K. R. Rao in 1973; they published their results in 1974.[30][31][32] This led to the development of the modified discrete cosine transform (MDCT), proposed by J. P. Princen, A. W. Johnson and A. B. Bradley in 1987,[33] following earlier work by Princen and Bradley in 1986.[34] The MDCT later became a core part of the MP3 algorithm.[35]

0


Вы здесь » hagalnaudbase3 » анкеты » тык


Рейтинг форумов | Создать форум бесплатно